This is not a operation you can always do. Definition With V=Rn Fix α∈Rn The inner product ⟨⋅∣⋅⟩:V×V→R With x=(x1,…,xn) With y=(y1,…,yn) Then, ⟨x∣y⟩=∑i=1nxiyi Alternatively, ⟨x∣y⟩=xTy Alternate Definitions ⟨u∣v⟩=∣u∣∗∣v∣∗cosθ ⟨u∣v⟩=u1v1+⋯+unvn Proofs Proving Standard Inner Function Property 2 Proving Standard Inner Function Property 3