A common operation between two R3 vectors.
u×v=(u2v3−u3v2,u3v1−u1v3,u1v2−u2v1)
u×v=∣∣v∣∣∣∣w∣∣sinθ
Cross Product as a Matrix
detia1b1ja2b2ka3b3=i[a2b2a3b3]−j[a1b1a3b3]+k[a1b1a2b2]
Properties
- Length of a×b is an area of the parllelogram spanned by a and b
- ∣∣a×b∣∣=∣∣a∣∣∣∣b∣∣sinθ
- a×b orthogonal to a and b
- Linearity : (au+bv)×w=a(u×w)+b(v×w)
- Anticommutivity : (u×v)=−(v×u)
- Dependence detecting : {u,v} dep ⟹u×v=0
- Distributivity under product: a×(b+c)=a×b+a×c
- Distributivity under addition: (a+b)×c=a×c+a×b