Definition
- Let f=c0+⋯+ckxk
- Let T∈L(V)
- Let A∈Mn×n(F)
Then,
- f(T)=c0I+c1T+⋯+ckTk=∑i=1nciTi (For operators)
- f(A)=c0T+c1A+⋯+ckAk=∑i=1nciAi (For matrixes)
Example
With T:R2→R2 as T(x1,x2)=(x2,3x1−x2)
Find f(T) where f(x)=x2−1
Soln
- f(T)=T2−I
- =f(T)(x1,x2)=(T2−1)(x1,x2)
- =T2(x1,x2)−I(x1,x2)
- =T(T(x1,x2))−I(x1,x2)
- =T(x2,3x1−x2)−(x1,x2)
- =(3x1−x2,3x2−(3x1−x2))−(x1,x2)
- =(2x1−x2,3x2−3x1)