Definition
- Let f=c0β+β―+ckβxk
- Let TβL(V)
- Let AβMnΓnβ(F)
Then,
- f(T)=c0βI+c1βT+β―+ckβTk=βi=1nβciβTi (For operators)
- f(A)=c0βT+c1βA+β―+ckβAk=βi=1nβciβAi (For matrixes)
Example
With T:R2βR2 as T(x1β,x2β)=(x2β,3x1ββx2β)
Find f(T) where f(x)=x2β1
Soln
- f(T)=T2βI
- =f(T)(x1β,x2β)=(T2β1)(x1β,x2β)
- =T2(x1β,x2β)βI(x1β,x2β)
- =T(T(x1β,x2β))βI(x1β,x2β)
- =T(x2β,3x1ββx2β)β(x1β,x2β)
- =(3x1ββx2β,3x2ββ(3x1ββx2β))β(x1β,x2β)
- =(2x1ββx2β,3x2ββ3x1β)