Definition
- Let x,y∈Fn
- Let d(x,y) be a Metric for F
- Let f(x,y)=∑i=1nd(xi,yi)
- Then, f is a metric for Fn
Proof
f(x,y)≥0
- As d(xi,yi)≥0
- Then, ∀i,∑i=1nd(xi,yi)≥0
- Then, ∀i,f(x,y)≥0
f(x,y)=f(y,x)
- Let x,y∈Fn
- Then, x=(x1,…,xn)
- And y=(y1,…,yn)
- f(x,y)=∑i=1nd(xi,yi) by defn of f
- =∑i=1nd(yi,xi) as d is a metric
- =f(y,x) by defn of f
f(x,y)=0⟺x=y
- f(x,y)=0
- ⟺∑i=1nd(xi,yi)=0
- ⟺d(xi,yi)=0
- ⟺xi=yi∀i
- ⟺x=y
f(x,z)≤f(x,y)+f(y,z)
- Let x,y,z∈Fn
- Then, x=(x1,…,xn)
- Then, y=(y1,…,yn)
- Then, z=(z1,…,zn)
- f(x,z)=∑i=1nd(xi,zi)
- ≤∑i=1n[d(xi,yi)+d(yi,zi]) as d is a Metric
- =∑i=1nd(xi,yi)+∑i=1nd(yi,zi)
- =f(x,y)+f(y,z)