Theorem
- Let f(x), g(x), h(x) be cont on interval [a,b]
- If βxβ[a,b],0β€f(x)β€g(x)
- If β«abβg(x)dx is cont
- Then, β«abβf(x)dx is cont
Proof
- Suppose βxβ[a,β],0β€f(x)β€g(x)
- Suppose β«aββf(x)dx Converges
- We want to show β«aββf(x)dx Converges
- Let Aβ[a,β) be arbitrary
- βΉβxβ[a,A]β[a,β),0β€f(x)β€g(x)
- βΉβ«aAβ0dxβ€β«aAβf(x)dxβ€β«aAβg(x)dx as integrals preserve inequalities
- βΉ0β€β«aAβf(x)dxβ€β«aAβg(x)dx
- βΉlimAβββ0β€limAββββ«aAβf(x)dxβ€limAββββ«aAβg(x)dx as limits preserve non-strict inequalities
- Note that limAββββ«aAβg(x)dx converges by (3)
- Note that limAββββ«aAβf(x)dx is the area accumulation function
- By FToC Part 2, we know that limAββββ«aAβf(x)dx is continuous
- Thus, β«aββf(x)dx converges