Theorem

  1. Let
  2. Suppose is an ordered Orthonormal Basis for
  3. Let where
  4. Then,

Example

With With Dot Product With basis Then, $$[T] = \left[\begin{array}{cc} \langle T e_{1} | e_{2} \rangle & \langle T e_{2} | e_{1} \rangle\ \langle T e_{2} | e_{1} \rangle & \langle T e_{2} | e_{2} \rangle\ \end{array}\right] = \left[\begin{array}{cc} \langle (1 , 1) | (1,0) \rangle & \langle (1, -1) | (1,0) \rangle\ \langle (1 , 1) | (0,1) \rangle & \langle (1, -1) | (0,1) \rangle\ \end{array}\right] = \left[\begin{array}{cc} 1 & 1\ 1 & -1\ \end{array}\right]