For a Multiple Integral with input variables where , where: is the Absolute Value of the determinant of the Jacobian Matrix.
For a Multiple Integral with input variables x,y where x=g(u,v), y=h(u,v) ∫∫f(x,y)dxdy=∫∫f(g(u,v),h(u,b))∣d(u,v)d(x,y)∣dudv where: ∣d(u,v)d(x,y)∣ is the Absolute Value of the determinant of the Jacobian Matrix.