Really large quotient. Expressions that have x in the base and x in the exponent
Example
Find general derivative:
y=xx
We rearrange
lny=lnxxlny=xlnx
Derivative of both sides
y1βdxdyβ=lnx+xx1β
Multiply both sides b ydxdyβ=y(lnx+1)dxdyβ=xx(lnx+1)
Use Cases of Logarithmic Differentiation
Quotient Rule Replacement
h(x)=(3x+2)4(2x+1)3(5xβ3)2βln both sides and use logarithm rules
lnh(x)=ln(5xβ3)2βln(3x+2)4βln(2x+1)3
More log rules
lnh(x)=2ln(5xβ3)β4ln(3x+2)β3ln(2x+1)
Now derive
h(x)1βhβ²(x)=2(5xβ31ββ5)β4(3x+21ββ3)β3(2x+11ββ2)hβ²(x)=(3x+2)4(2x+1)3(5xβ3)2ββ(5xβ310ββ3x+212ββ2x+16β)
This works for all quotients