Corrolary

  1. If is a Orthogonal Set of non-zero vectors that spans
  2. Then,

This allows you to find a coordinate by just using the inner product with one orthogonal vector. This ties into how nice matrixes are formed.

Example

  • Find the coordinate form of using the orthogonal basis
[(1,3)] = [\begin{array}{cc} \langle (1,3) | (\frac{1}{\sqrt{ 2 }}, \frac{1}{\sqrt{ 2 }}) \\ \langle (1,3) | (\frac{1}{\sqrt{ 2 }} , - \frac{1}{\sqrt{ 2 }})\\ \end{array}]$$ $$[(1,3)] = (\frac{4}{\sqrt{ 2 }}, -\frac{2}{\sqrt{ 2 }})$$