Corrolary
- If {α1,…,αm} is a Orthogonal Set of non-zero vectors that spans V
- Then, ∀β∈V,β=∑i=1m∣∣αk∣∣2⟨β∣αk⟩αk
This allows you to find a coordinate by just using the inner product with one orthogonal vector.
This ties into how nice matrixes are formed.
Example
- Find the coordinate form of (1,3) using the orthogonal basis β={21(1,1),21(1,−1)}
[(1,3)] = [\begin{array}{cc}
\langle (1,3) | (\frac{1}{\sqrt{ 2 }}, \frac{1}{\sqrt{ 2 }}) \\
\langle (1,3) | (\frac{1}{\sqrt{ 2 }} , - \frac{1}{\sqrt{ 2 }})\\
\end{array}]$$
$$[(1,3)] = (\frac{4}{\sqrt{ 2 }}, -\frac{2}{\sqrt{ 2 }})$$