A way of representing Linear Map as a matrix.
Theorem
Let V , W be finite dimensional vector spaces with d im ( V ) = n and d im ( W ) = k .
Fix bases α = { v 1 , … , v n } and β = { w 1 , … , w k }
With V = s p an ( α ) , W = s p an ( β )
Suppose that T : V → W is a linear transformation with:
T ( v i ) = a 1 i w 1 + ⋯ + a ki w k = ∑ j = 1 k a ji w j
The matrix is represented as:
a_{11} \dots a_{1n} \\
\vdots\\
a_{k1} \dots a_{kn}
\end{array}\right]
It starts at basis α and ends in basis β
Proof
Let A = ( A ij ) ∈ F m × n where scalars A ij are obtained by T α j = ∑ i = 1 m A ij B i , ∀1 ≤ j ≤ n where β = { α 1 , … , a n } , β ′ = { β 1 , … , β m }
i.e, $$[T_{\alpha i}]{\beta’} =
\left[\begin{array}{c}
A {1j} \
A_{2j} \
\vdots\
A_{mj} \
\end{array}\right]
- Now, let $\alpha \in V$, Then $\alpha = c_{1}a_{1} +\dots+c_{n}a_{n}$
- Thus, $T(a) = T\left( \sum_{n}^{j=1}c_{j}\alpha_{j} \right) = \sum_{n}^{j=1}(\sum_{m}^{i=1}c_{j}A_{ij})B_{i}$
- Thus, $$[T_{\alpha i}]_{\beta'} =
\left[\begin{array}{c}
\sum_{n}^{j=1}c_{j}A_{1j} \\
\sum_{n}^{j=1}c_{j}A_{2j} \\
\vdots\\
\sum_{n}^{j=1}c_{j}A_{mj} \\
\end{array}\right]
Notice that, $$A[\alpha]{\beta} =
\left[\begin{array}{c}
\sum {n}^{j=1}c_{j}A_{1j} \
\sum_{n}^{j=1}c_{j}A_{2j} \
\vdots\
\sum_{n}^{j=1}c_{j}A_{mj} \
\end{array}\right]
- Thus, a matrix exists
- This matrix is unique, as the linear transformation is unique
# Examples
- [[Finding Matrix Representation for Identity Transformation]]