A way of representing Linear Map  as a matrix.
Theorem 
Let V , W d im ( V ) = n d im ( W ) = k α = { v 1  , … , v n  } β = { w 1  , … , w k  } V = s p an ( α ) W = s p an ( β ) 
Suppose that T : V → W T ( v i  ) = a 1 i  w 1  + ⋯ + a ki  w k  = ∑ j = 1 k  a ji  w j  
a_{11} \dots a_{1n}  \\ 
\vdots\\
a_{k1} \dots a_{kn} 
\end{array}\right] 
It starts at basis α β 
Proof 
Let A = ( A ij  ) ∈ F m × n A ij  T α j  = ∑ i = 1 m  A ij  B i  , ∀1 ≤ j ≤ n β = { α 1  , … , a n  } β ′ = { β 1  , … , β m  }  
i.e, $$[T_{\alpha i}]{\beta’} =
\left[\begin{array}{c}
A {1j} \
A_{2j}  \
\vdots\
A_{mj} \
\end{array}\right] 
 
- Now, let $\alpha \in V$, Then $\alpha = c_{1}a_{1} +\dots+c_{n}a_{n}$
- Thus, $T(a) = T\left(  \sum_{n}^{j=1}c_{j}\alpha_{j}  \right) = \sum_{n}^{j=1}(\sum_{m}^{i=1}c_{j}A_{ij})B_{i}$
- Thus, $$[T_{\alpha i}]_{\beta'} = 
\left[\begin{array}{c}
\sum_{n}^{j=1}c_{j}A_{1j} \\
\sum_{n}^{j=1}c_{j}A_{2j} \\
\vdots\\
\sum_{n}^{j=1}c_{j}A_{mj} \\
\end{array}\right] 
Notice that, $$A[\alpha]{\beta} =
\left[\begin{array}{c}
\sum {n}^{j=1}c_{j}A_{1j} \
\sum_{n}^{j=1}c_{j}A_{2j} \
\vdots\
\sum_{n}^{j=1}c_{j}A_{mj} \
\end{array}\right] 
 
- Thus, a matrix exists
- This matrix is unique, as the linear transformation is unique
# Examples
- [[Finding Matrix Representation for Identity Transformation]]