If we let p(x) = f(x)g(x) then using the limit definition, we do:
If we let p(x) = f(x)g(x) then using the limit definition, we do: p′(x)=limh→0[hf(x+h)g(x+h)−f(x)g(x)] p′(x)=limh→0[hf(x+h)g(x+h)−f(x)g(x+h)+f(x)g(x+h)−f(x)g(x)] p′(x)=limh→0[hf(x+h)−f(x)g(x)+f(x)hg(h+x)−g(x)] p′(x)=limh→0hf(x+h)−f(x)limh→0g(x)+limh→0f(x)limh→0hg(h+x)−g(x) p′(x)=f′(x)g(x)+g′(x)f(x)