Definition
- With x1,x2∈C
- Let x1=a+bi
- Let x2=c+di
- Let d(x1,x2)=(a−c)2+(b−d)2
Proving d(x,y)≥0
- Let x,y∈C
- Then, x=a+bi and y=c+di
- d(x,y)=(a−c)2+(b−d)2
- Note that (a−c)2≥0 by ineq prop of (⋅)2
- Note that (b−d)2≥0 by ineq prop of (⋅)2
- Then, note that (a−c)2+(b−d)2≥0 by ineq props
- So, this (a−c)2+(b−d)2 is defined for all x,y
- Note that ⋅ has a range of [0,∞)
- Thus, d(x,y)≥0,∀x,y
Proving d(x,y)=d(y,x)
- Let x,y∈C
- Then, x=a+bi
- Then, y=c+di
- With L.S = d(x,y)=d(a+bi,c+di)=(a−c)2+(b−d)2
- =(c−a)2+(b−d)2
- =d(c+di,a+bi)=d(y,x)
- Thus, d(x,y)=d(y,x)∀x,y∈C
Proving d(x,y)=0⟺x=u
Proving ⟸
- Let x=y∈C
- Then, x=y=a+bi
- Then, d(x,y)=d(a+bi,a+bi)=(a−a)2+(b−b)2=0=0
Proving ⟹
- Let x,y∈C s.t d(x,y)=0
- Then, x=a+bi
- Then, y=c+di
- Suppose for sake of Contradiction that x=y
- Then, either a=c or b=d
- Then, this means a−c=0 or b−d=0
- This means (a−c)2>0∧(b−d)2≥0 or (b−d)2>0∧(b−d)≥0
- This implies that (a−c)2+(b−d)2>0
- This implies (a−c)2+(b−d)2>0
- This implies d(x,y)>0
- Contradicts that d(x,y)=0
- Thus, x=y by contradiction
Proving d(x,z)≤d(x,y)+d(y,z)
