Given a linear map We can express for a given vector as:

Intuition

Drawing 2025-02-07 11.26.28.excalidraw

⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠

Text Elements

v = (x,y)

theta

w = Re(v) = ( )

y = || v || sin(d)

d

y = || v || cos(d)

Supposing v = (x,y) = (||v|| cos(x), ||v|| sin(x)

Then, we have Re(v) = (||v|| cos(d+theta), ||v|| sin(d + theta))

= (||v|| ( cos(d)cos(theta) - sin(d)sin(theta) ), ||v|| (sin(d)cos(theta) + sin(theta)cos(d)) )

by compound angle identity

= ( (||v||cos(d))cos(theta) - (||v||sin(d))sin(theta) , (||v||sin(d))cos(theta) + sin(theta)(||v||cos(d))

= (xcos(theta) - ysin(theta) , ycos(theta) + xsin(theta))

Link to original
Thus, our final formula is:

Useful Rotations

y-axis reflection

x-axis reflection

Counter-Clockwise Rotation from Origin

Reflection about

Reflection of
Reflection of