- If V,W are finite dimensional vector spaces
- With dim(V)=n
- If V=span{u1,…,uk,vk+1,…,vn} s.t:
- Then: Image(T)=span{T(vk+1),…,T(vn)}
Proof
- Pick a basis for ker(T)={u1,…,uk}
- We know that V is finitely dimensional, and that dim(V)=n
- Thus, we can extend to a basis V=span{u1,…,uk,vk+1,…,vn}
- We want to verify tat Image(T)=span{T(vk+1),…,T(vn)}
- Proving span{T(vk+1),…,T(vn)}⊂Image(T)
- span{T(vk+1),…,T(vn)}∈Image(T) is straight forward
- Pick w∈span{T(vk+1),…,T(vn)}, then we have:
- w=ak+1T(vk+1)+⋯+anT(vn) by definition of span
- w=T(ak+1vk+1+⋯+anvn) by Linearity
- Thus, w∈Image(T)
- Proving Image(T)⊂span{vk+1,…,vn}
- Pick w∈Image(T)
- Then, we have w=T(v) for some v∈V
- Thus, w=T(a1u1+⋯+akuk+vk+1uk+1+⋯+anvn)
- =a1T(u1)+⋯+akT(uk)+ak+1T(vk+1)+⋯+anT(vn) by Linearity
- As u1,…uk∈ker(T)⟹T(u1),…,T(uk)=0
- =0+⋯+0+ak+1T(vk+1)+⋯+T(vn)
- ∈span{T(vk+1),…,T(vn)}