import getpassimport osfrom dotenv import load_dotenvimport google.generativeai as genai# langchain librariesfrom langchain_core.messages import HumanMessagefrom langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddingsfrom langchain.vectorstores import DocArrayInMemorySearch# -- loading env for api keys ---load_dotenv()# --- fetch the google gemini ---llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0.7)#result = llm.invoke("hello who is this?")#print(result.text)# ------ setup RAG -----embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")vectorstore = DocArrayInMemorySearch.from_texts( ["The answer to life, universe and everything is 43"], embedding=embeddings)# making the RAGretriever = vectorstore.as_retriever()print(retriever.get_relevant_documents("What is the answer to life universe and everything?"))