Proof
- Suppose βanβ converges to sβR
- Then, by the definition of convergence, limnβββSnβ=s
- WTS: limnβββanβ=0
- Then, consider limnβββanβ=limnβββ(anβ+0)
- =limnβββ(anβ+a1β+β―+anβ1ββa1βββ―βanβ1β)
- =limnβββ(SnββSnβ1β) by Series Partial Sum
- =limnβββ(Snβ)βlimnβββ(Snβ1β) by Limit Properties
- =limnβββ(Snβ)βlimnβββ(Snβ) as limnβββ(nβ1)βΌn
- =sβs
- =0
- β‘