Recall that Linear Transformation Rotation is: We calculate on the standard basis: This gives:
Recall that Linear Transformation Rotation is: Rθ(x,y)=(xcos(θ)−ysin(θ),ycos(θ)+xsin(θ)) We calculate Re on the standard basis: Rθ=(1,0)=(cos(θ),sin(θ)) Rθ(e1)=cos(θ)e1+sin(θ)e2 Rθ(011)=(−sinθ,cosθ) Rθ(e2)=(−sinθ)e1+cos(θ)e2 This gives:
[Rθ]αα=[cosθ−sinθ−sinθcosθ]