Theorem
- Let as a vector space
- Let
- With
- Then be the -annihilator of
- With as a basis for be the linear operator defined by restriction of onto the subspace then,
[T_{Z}]{\beta} = \left[\begin{array}{cc} 0 & 0 & 0 & \dots & 0 & - \alpha{0}\ 1 & 0 & 0 & \dots & 0 & -\alpha_{1}\ 0 & 1 & 0 & \dots & 0 & - \alpha_{2}\ \vdots & \vdots & \ddots & \ddots & 0 & -\alpha_{z}\ 0 & 0 & 0 & \dots & 1 & -\alpha_{z-1}\ \end{array}\right]
# Example Find companion matrix for $x^{3} -5x + 8x - 4$ 1. We write the first columns out\left[\begin{array}{ccc} 0 & 0 & ?\ 1 & 0 & ?\ 0 & 1 & ?\ \end{array}\right]
\left[\begin{array}{ccc} 0 & 0 & 4\ 1 & 0 & -8\ 0 & 1 & 5\ \end{array}\right]