Theorem
Absolute Values Induce a Metric
- D as an Integral Domain or Field
- Let ∣⋅∣:D→R be an absolute value
- Let d(x,y)=∣x−y∣
- For all x,y∈D
- Then, d is a metric for D
Alternate Theorem
- Let ∣∣⋅∣∣:V→R be a Norm with ∣⋅∣
- Then, d(x,y)=∣∣x−y∣∣ is a Metric for V
Proof
Proving d(x,y)≥0
- Let x,y∈D, then d(x,y)=∣x−y∣≥0 as ∣⋅∣≥0
Proving d(x,y)=d(y,x)
- d(x,y)=∣x−y∣=∣x+(−y)∣−∣(−1)(−1)(x)+y∣
- =∣(−1)∗(y+(−1)(x)∣=∣(−1)∗(y−x)∣=∣−1∣∗∣y−x∣=∣y−x∣ as ∣−1∣=1
Proving d(x,y)=0⟺x=y
Proving d(x,z)≤d(x,y)+d(y,z)
- d(x,z)=∣x−z∣=∣x−y+y−z∣=∣(x−y)+(y−z)∣
- ≤∣x−y∣+∣y−z∣=d(x,y)+d(y,z)