Theorem
Absolute Values Induce a Metric
- D as an Integral Domain or Field
- Let β£β
β£:DβR be an absolute value
- Let d(x,y)=β£xβyβ£
- For all x,yβD
- Then, d is a metric for D
Alternate Theorem
- Let β£β£β
β£β£:VβR be a Norm with β£β
β£
- Then, d(x,y)=β£β£xβyβ£β£ is a Metric for V
Proof
Proving d(x,y)β₯0
- Let x,yβD, then d(x,y)=β£xβyβ£β₯0 as β£β
β£β₯0
Proving d(x,y)=d(y,x)
- d(x,y)=β£xβyβ£=β£x+(βy)β£ββ£(β1)(β1)(x)+yβ£
- =β£(β1)β(y+(β1)(x)β£=β£(β1)β(yβx)β£=β£β1β£ββ£yβxβ£=β£yβxβ£ as β£β1β£=1
Proving d(x,y)=0βΊx=y
Proving d(x,z)β€d(x,y)+d(y,z)
- d(x,z)=β£xβzβ£=β£xβy+yβzβ£=β£(xβy)+(yβz)β£
- β€β£xβyβ£+β£yβzβ£=d(x,y)+d(y,z)