Theorem
- With
- With
Proof
- With for
- With for
- For each pair where
- Define a Linear Map
E^{p,q}(a_{i}) = \begin{cases} b_{p} & i = q \ 0 & i \neq q \end{cases}
4. Note that $\{ E^{p,q} | p \in [1,n], q \in [1,m] \}$ forms a basis for $\mathcal{L}(V,W)$ 5. Thus, $dim(\mathcal{L}(V,W)) = n * m$