Theorem

  • With
  • With

Proof

  1. With for
  2. With for
  3. For each pair where
    1. Define a Linear Map

E^{p,q}(a_{i}) = \begin{cases} b_{p} & i = q \ 0 & i \neq q \end{cases}

4. Note that $\{ E^{p,q} | p \in [1,n], q \in [1,m] \}$ forms a basis for $\mathcal{L}(V,W)$ 5. Thus, $dim(\mathcal{L}(V,W)) = n * m$