Theorem
- With set β={β1,…,βn}
- Then set S={∣∣β1∣∣β1,…,∣∣βn∣∣βn} is Orthonormal Set
Proof
Using Strong Induction
- Firstly note that ∣∣αi∣∣=0
- We can define β as follows
- First, we prove every vector is a Unit Vector
- ⟨∣∣αi∣∣αi∣∣∣αi∣∣αi⟩=∣∣αi∣∣⋅∣∣αi∣∣1⋅⟨αi∣αi⟩=∣∣αi∣∣2∣∣αi∣∣2=1
- We show that ⟨∣∣αi∣∣αi∣∣∣αj∣∣αj⟩=0⟺i=j
- Note that ⟨∣∣αi∣∣αi∣∣∣αj∣∣αj⟩=∣∣αi∣∣∗∣∣αj∣∣1⟨αi∣αj⟩=0⟺⟨αi∣αj⟩=0
- Now we show ⟨αi∣αj⟩=0⟺i=j
- Proof with strong induction:
Base Case
- Base case n=2
- Then, ⟨α2∣α1⟩=⟨β2−⟨α1∣α1⟩⟨β2−α1⟩∗α1∣α1⟩
- =⟨β2∣α1⟩−⟨α1∣α1⟩⟨β2∣α1⟩⋅⟨α1∣α1⟩
- =0
n+1 case
- Assume the set {α1,…,αn} is Orthogonal Set
- Then, this means ⟨αi∣αj⟩=0,∀i=j∈{1,…,n}
- Consider ⟨αn+1∣αk⟩ where k∈{1,…,n}
- ⟨αn+1∣αk⟩=⟨βn+1−∑i=1n⟨αi∣αi⟩⟨βn+1∣αi⟩⋅αi∣αk⟩
- =⟨βn+1∣αk−⟩−∑i=1n⟨αi∣αk⟩⟨βn+1∣αi⟩⟨αi∣αk⟩−⟨αk∣αk⟩⟨βn+1∣αk⟨αk∣αk⟩−∑i=1n⟨αi∣αi⟩⟨βn+1∣αi⟩⟨αi∣αk⟩