Theorem
If is then: Note that The second-order taylor approxmiation is:
If f:U⊂Rn→R is C3 then: f(x0+h)=f(x0)+∑i=1nhi∂xi∂f(x0)+21∑i,j=1nhihj∂xi∂xj∂2f(x0)+R2(x0,h) Note that lim∣∣h∣∣→0∣∣h∣∣2R2(x0,h)=0 The second-order taylor approxmiation is: f(x0+h)∼f(x0)+[Df(x0)]h+Hf(h)