Pascals Theorem
This is using pascal triangle to expand binomials.
So a degree 3 binomial will match the coefficients with that row in the pascalβs triangle.
Shorthand notation
( x + y ) n = i β 0 β n β = n β C i β x i β 1 y i
Example
( x + y ) 4
4th row of pascal triangle: 1 4 6 4 1
( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4
Example 2
( 1 + b x ) n = 1 β 3 x + 4 15 β x 2
term 1:
n β C 0 β ( 1 ) n ( b x ) 0 = 1
term 2:
n β C 1 β ( 1 ) n β 1 ( b x ) 1 = β 3 x
n β C 1 β = n β 1 ( 1 !) n ! β = n
nb x = β 3 x
nb = β 3
b = n β 3 β
term 3:
n β C 2 β ( 1 ) n β 2 ( b x ) 2 = 4 15 β x 2
= ( n β 2 )! 2 ! n ! β b 2 x 2 = 4 15 β x 2
= 2 ( n ) ( n β 1 ) β b 2 x 2 = 4 15 β x 2
2 ( n ) ( n β 1 ) β b 2 = 4 15 β
2 ( n ) ( n β 1 ) β ( n 3 β ) 2 = 4 15 β
2 ( n ) ( n β 1 ) β ( n 2 9 β ) = 4 15 β
2 n ( 9 ) ( n β 1 ) β = 4 15 β
3 b ( n β 1 ) = 30 n
3 bn β 3 b = 30 n
6 n = 3 b
n = 6
b = β 1/2