Definition
- With V as a vector space over F
- ∀α,β,γ∈V, ∀c∈F
- An inner product ⟨⋅,⋅⟩:V×V→F has properties
- ⟨α+β∣γ⟩=⟨α+β⟩+⟨β+γ⟩
- ⟨cα∣β⟩=c⟨a∣β⟩
- ⟨β∣α⟩=⟨α∣β⟩ (Conjugate Symmetry)
- ⟨α∣α⟩>0 if α=0
Example
With α=(x1,…,xn)
With β=(y1,…yn)
Over C⟹α⋅β=∑j=1nxjyj=⟨α,β⟩
Proof
Proving ⟨α+β∣γ⟩=⟨α∣γ⟩+⟨β∣γ⟩,∀α,β,γ∈Rn
- Over C, ⟨α+β∣γ⟩=⟨(x1,…,xn)+(y1,…,yn)∣(z1,…,zn)⟩
- =⟨(x1+y1,…,xn+yn∣(z1,…,zn)⟩
- =∑i=1n(xi+yi)zi
- =∑i=1n(xi)zi+∑i=1nxizi
- =⟨α,γ⟩+⟨β,γ⟩
… for the other 4 axioms
Theorems