This is a tedious process
Process
- Find the characteristic polynomial of the matrix
- Determine the roots of the polynomial, these are your Eigenvalues
- For each eigenvalue , compute the eigenvector given by
Example
Find all eigenvalues and eigenvectors of
- The roots are
- For : we find
\left[\begin{array}{cc|c} -4 & 2 & 0 \ 4 & -2 & 0 \ \end{array}\right]
\left[\begin{array}{cc|c} 1 & -\frac{1}{2} & 0 \ 0 & 0 & 0 \ \end{array}\right]
1. Then, $v = (1,2)$ is a non-zero soln 6. For $\lambda = -1$, we find $(M - (-1)I) \overrightarrow{x} = 0$\left[\begin{array}{cc|c} 2 & 2 & 0 \ 4 & 4 & 0 \ \end{array}\right]
\left[\begin{array}{cc|c} 1 & 1 & 0 \ 0 & 0 & 0 \ \end{array}\right]
1. Then, $v = (1,-1)$ is a non-zero soln 7. Thus, we get $(1,2)$ is a $5$-eigenvector 8. Thus, we get $(1,-1)$ is a $(-1)$-eigenvector