This is a tedious process

Process

  1. Find the characteristic polynomial of the matrix
  2. Determine the roots of the polynomial, these are your Eigenvalues
  3. For each eigenvalue , compute the eigenvector given by

Example

Find all eigenvalues and eigenvectors of

  1. The roots are
  2. For : we find

\left[\begin{array}{cc|c} -4 & 2 & 0 \ 4 & -2 & 0 \ \end{array}\right]

\left[\begin{array}{cc|c} 1 & -\frac{1}{2} & 0 \ 0 & 0 & 0 \ \end{array}\right]

1. Then, $v = (1,2)$ is a non-zero soln 6. For $\lambda = -1$, we find $(M - (-1)I) \overrightarrow{x} = 0$

\left[\begin{array}{cc|c} 2 & 2 & 0 \ 4 & 4 & 0 \ \end{array}\right]

\left[\begin{array}{cc|c} 1 & 1 & 0 \ 0 & 0 & 0 \ \end{array}\right]

1. Then, $v = (1,-1)$ is a non-zero soln 7. Thus, we get $(1,2)$ is a $5$-eigenvector 8. Thus, we get $(1,-1)$ is a $(-1)$-eigenvector