If you get an indeterminate form when cont at By Linearization, hence, Since f cont at a,
If you get an indeterminate form when f,g cont at a By Linearization, f(x)∼f(a)+f′(a)(x−a) g(x)∼g(a)+g′(a)(x−a) hence, limx→ag(x)f(x)=limx→ag(a)+g′(a)(x−a)f(a)+f′(a)(x−a) limx→ag(x)f(x)=limx→a0+g′(a)(x−a)0+f′(a)(x−a) limx→ag(x)f(x)=limx→ag′(a)f′(a) Since f cont at a, limx→af(x)=f(a) limx→ag′(a)f′(a)=limx→ag′(x)f′(x)