Then, by definition of local minima, βΞ΄>0 s.t 0<β£xβcβ£<Ξ΄βΉf(x)β₯f(c)
Let Ξ΄ be arbitrary
Suppose 0<β£xβcβ£<Ξ΄
Then f(x)β₯f(c)
This means f(x)βf(c)β₯0
Since fβ²(c) exists, then this means that f(c) is continuous. Thus, limxβcββxβcf(x)βf(c)β=limxβcβxβcf(x)βf(c)β=limxβc+βxβcf(x)βf(c)β
Then, by definition of local maxima, βΞ΄>0 s.t 0<β£xβcβ£<Ξ΄βΉf(x)β€f(c)
Let Ξ΄ be arbitrary
Suppose 0<β£xβcβ£<Ξ΄
Then f(x)β€f(c)
This means f(x)βf(c)β€0
Since fβ²(c) exists, then this means that f(c) is continuous. Thus, limxβcββxβcf(x)βf(c)β=limxβcβxβcf(x)βf(c)β=limxβc+βxβcf(x)βf(c)β