Theorem If {an} converges Then, {an}‘s limit is unique Proof Suppose {an} converges Choose arbitrary l1,l2 s.t {an}=l1 and {an}=l2 We want to show that l1=l2 ⟹l1−l2=0 ⟹∀ϵ>0,∣l1−l2∣<ϵ Let ϵ>0 be arbitrary Invoke 1 with ϵ1=2ϵ Note that ∃N>0 s.t if n>N then ∣an−l1∣<ϵ1 Invoke 1 with ϵ2=2ϵ Note that ∃N>0 s.t if n>N then ∣an−l2∣<ϵ2 Then, consider ∣l1−l2∣=∣−an−l1+an−ln∣≤∣an−l1∣+∣an−l2∣=2ϵ+2ϵ=ϵ □