Theorem
- If {anβ} converges
- Then, {anβ}βs limit is unique
Proof
- Suppose {anβ} converges
- Choose arbitrary l1β,l2β s.t {anβ}=l1β and {anβ}=l2β
- We want to show that l1β=l2β
- βΉl1ββl2β=0
- βΉβΟ΅>0,β£l1ββl2ββ£<Ο΅
- Let Ο΅>0 be arbitrary
- Invoke 1 with Ο΅1β=2Ο΅β
- Note that βN>0 s.t if n>N then β£anββl1ββ£<Ο΅1β
- Invoke 1 with Ο΅2β=2Ο΅β
- Note that βN>0 s.t if n>N then β£anββl2ββ£<Ο΅2β
- Then, consider β£l1ββl2ββ£=β£βanββl1β+anββlnββ£β€β£anββl1ββ£+β£anββl2ββ£=2Ο΅β+2Ο΅β=Ο΅
- β‘