Property UU∗=I=U∗U Proof ⟨Uα∣β⟩=⟨Uα∣Iβ⟩=⟨Uα∣UU−1β⟩=⟨α∣U−1β⟩ Therefore, U−1=U∗ are adjoins if existing α is unique Now, we show U Preserve Inner Product ⟨Uα∣Uβ⟩=⟨α∣U∗(Uβ)⟩=⟨α∣Iβ⟩=⟨α∣β⟩